Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Magn Reson Imaging ; 44(2): 296-304, 2016 08.
Article in English | MEDLINE | ID: mdl-26825048

ABSTRACT

PURPOSE: To determine whether differences in hydration state, which could arise from routine clinical procedures such as overnight fasting, affect brain total water content (TWC) and brain volume measured with magnetic resonance imaging (MRI). MATERIALS AND METHODS: Twenty healthy volunteers were scanned with a 3T MR scanner four times: day 1, baseline scan; day 2, hydrated scan after consuming 3L of water over 12 hours; day 3, dehydrated scan after overnight fasting of 9 hours, followed by another scan 1 hour later for reproducibility. The following MRI data were collected: T2 relaxation (for TWC measurement), inversion recovery (for T1 measurement), and 3D T1 -weighted (for brain volumes). Body weight and urine specific gravity were also measured. TWC was calculated by fitting the T2 relaxation data with a nonnegative least-squares algorithm, with corrections for T1 relaxation and image signal inhomogeneity and normalization to ventricular cerebrospinal fluid. Brain volume changes were measured using SIENA. TWC means were calculated within 14 tissue regions. RESULTS: Despite indications of dehydration as demonstrated by increases in urine specific gravity (P = 0.03) and decreases in body weight (P = 0.001) between hydrated and dehydrated scans, there was no measurable change in TWC (within any brain region) or brain volume between hydration states. CONCLUSION: We demonstrate that within a range of physiologic conditions commonly encountered in routine clinical scans (no pretreatment with hydration, well hydrated before MRI, and overnight fasting), brain TWC and brain volumes are not substantially affected in a healthy control cohort. J. Magn. Reson. Imaging 2016;44:296-304.


Subject(s)
Body Water/diagnostic imaging , Brain/diagnostic imaging , Brain/physiology , Diffusion Magnetic Resonance Imaging/methods , Drinking/physiology , Fasting/physiology , Water-Electrolyte Balance/physiology , Adult , Brain/anatomy & histology , Drinking Water , Female , Humans , Imaging, Three-Dimensional/methods , Male , Middle Aged , Organ Size/physiology , Reference Values , Reproducibility of Results , Sensitivity and Specificity , Water Deprivation/physiology
2.
Exp Brain Res ; 204(3): 397-407, 2010 Jul.
Article in English | MEDLINE | ID: mdl-19943038

ABSTRACT

Social interaction and comprehension of non-verbal behaviour requires a representation of people's bodies. Research into the neural underpinnings of body representation implicates several brain regions including extrastriate and fusiform body areas (EBA and FBA), superior temporal sulcus (STS), inferior frontal gyrus (IFG) and inferior parietal lobule (IPL). The different roles played by these regions in parsing familiar and unfamiliar body postures remain unclear. We examined the responses of this body observation network to static images of ordinary and contorted postures by using a repetition suppression design in functional neuroimaging. Participants were scanned whilst observing static images of a contortionist or a group of objects in either ordinary or unusual configurations, presented from different viewpoints. Greater activity emerged in EBA and FBA when participants viewed contorted compared to ordinary body postures. Repeated presentation of the same posture from different viewpoints lead to suppressed responses in the fusiform gyrus as well as three regions that are characteristically activated by observing moving bodies, namely STS, IFG and IPL. These four regions did not distinguish the image viewpoint or the plausibility of the posture. Together, these data define a broad cortical network for processing static body postures, including regions classically associated with action observation.


Subject(s)
Brain/physiology , Posture , Visual Perception/physiology , Body Image , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/physiology , Neuropsychological Tests , Photic Stimulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...